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Abstract
We investigate the Becker–Döring model of nucleation with three
generalizations; an input of monomer, an input of inhibitor and finally, we
allow the monomers to form two morphologies of cluster. We assume size-
independent aggregation and fragmentation rates. Initially we consider the
problem of constant monomer input and determine the steady-state solution
approached in the large-time limit, and the manner in which it is approached.
Secondly, in addition to a constant input of monomer we allow a constant input
of inhibitor, which prevents clusters growing any larger and this removes them
from the kinetics of the process; the inhibitor is consumed in the action of
poisoning a cluster. We determine a critical ratio of poison to the monomer
input below which the cluster concentrations tend to a non-zero steady-state
solution and the poison concentration tends to a finite value. Above the critical
input ratio, the concentrations of all cluster sizes tend to zero and the poison
concentration grows without limit. In both cases the solution in the large-time
limit is determined. Finally we consider a model where monomers form two
morphologies, but the inhibitor only acts on one morphology. Four cases are
identified, depending on the relative poison to monomer input rates and the
relative thermodynamic stability. In each case we determine the final cluster
distribution and poison concentration. We find that poisoning the less stable
cluster type can have a significant impact on the structure of the more stable
cluster distribution; a counter-intuitive result. All results are shown to agree
with numerical simulation.

PACS numbers: 64.60.Qb, 82.60.Nh, 05.70.Fh

0305-4470/04/061971+16$30.00 © 2004 IOP Publishing Ltd Printed in the UK 1971

http://stacks.iop.org/ja/37/1971


1972 C D Bolton and J A D Wattis

1. Introduction

In 1935 Becker and Döring [1] presented an enduring model of nucleation where clusters form
by the addition, or subtraction, of single particles (monomers) with no interaction between
larger clusters. Such larger clusters evolve by maintaining a dynamic balance of monomer
aggregation and fragmentation. Modelling this process as a series of chemical reactions and
denoting an r-sized cluster by Xr , we have

Xr + X1 � Xr+1. (1)

For each reaction there are two reaction rates to prescribe, we denote the forward rate by ar

and the reverse by br+1, both non-negative. Defining Jr as the net flux from cluster size r to
r + 1 and xr(t) as the concentration of clusters Xr at time t, we express the system by

ẋ1 = x0(t) − J1 −
∞∑

r=1

Jr (2)

ẋr = Jr−1 − Jr r � 2 (3)

Jr = arxrx1 − br+1xr+1 r � 1 (4)

where originally x0(t) was assumed to be such that ẋ1 = 0 [1]. Later Penrose [2] generalized
this by setting x0(t) = 0, thus ensuring the conservation of density

ρ =
∞∑

r=1

rxr . (5)

These modified equations are still referred to as the Becker–Döring equations. For certain
aggregation and fragmentation rates the existence and uniqueness of a solution to (2)–(4) have
been demonstrated by Ball et al [3] for densities below a critical value; furthermore this result
was subsequently generalized to arbitrary initial data by Ball and Carr [4]. The asymptotic
solution for a variety of aggregation and fragmentation rates has been described by Wattis and
King [5], King and Wattis [6] and Wattis et al [7].

Various aspects of the Becker–Döring equations have been investigated, including the
existence of metastable solutions by Penrose [8], the aggregation-dominated regime by Carr
[9] and the difficulties in numerically modelling metastable systems by Carr et al [10] and
Duncan and Soheili [11]. The self-replication of micelles and vesicles, including the size-
templating matrix effect, have been successfully modelled by novel generalizations of the
Becker–Döring model [12–15]. Additionally the origin of RNA has been studied by Wattis
and Coveney [16]. While being widely applicable, the Becker–Döring equations make the
restrictive assumption that only monomers may interact with clusters. Smoluchowski [17]
proposed a more general model allowing all cluster sizes to aggregate, and for a cluster to split
into uneven fragments. Blackman and Marshall [18] exploit the Smoluchowski equations to
study scaling behaviour in essentially the Becker–Döring regime. Da Costa [19] generalized
the Becker–Döring model to include dimer interactions; a model subsequently analysed by
Bolton and Wattis [20]. Thus the Becker–Döring model with either x0(t) = 0 or x0(t) such
that ẋ1 = 0 has been extensively studied and generalized. We propose to investigate a more
general system which maintains a constant influx of monomers, that is x0(t) = x0, which is
relevant to many industrial processes which rely upon continuous flow reactions rather than
production in batches.

A constant input of mass can be balanced either by removing mass at larger cluster sizes
or by adding a poison influx; and we model the latter. The inhibitor is consumed in the action
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of poisoning a growing cluster; once poisoned, a cluster has no further interactions and is
assumed to be removed from the system. Previously inhibition has been studied by Wattis
and Coveney [21], where clusters above a chosen size could be neutralized by an inhibitor.
However, this description lacked an influx of poison, and monomer, and rather considered the
case where the system initially has a finite stock of monomer and poison.

Finally we generalize the above poisoning model by allowing competition for the
monomers which can form clusters of two morphologies and allow only one morphology
to be poisoned. Preliminary work on this system has been reported by Wattis [22] where the
constant density system (x0(t) = 0) was analysed and the possibility of two morphology of
clusters developing from the monomers was included, the first is denoted by Xr and the second
Yr . Thus the reactions that were allowed had the form

Xr + X1 � Xr+1 Yr + X1 � Yr+1. (6)

No cluster can change morphology from X to Y or vice versa; the only way mass can change
from one form to the other is by the stepwise break-up of one cluster entirely into monomers
(which have no morphology) and the subsequent re-aggregation of monomers in the other
form. The system analysed in [22] was shown to have the same basic properties as the
original Becker–Döring system, that is a conserved density, a unique equilibrium solution and
a Lyapunov function. Again this model lacks the influx of monomers and poison which we
will consider here.

This introduction concludes with a description of the general model of monomer input,
competition and inhibition, and how this model is truncated so that numerical simulations may
be performed. Due to the complexity of the model we study each generalization to the original
Becker–Döring system in turn. In section 2 we formulate the model which includes a constant
influx of monomers, and assumes that there is no poison and only one morphology of cluster
can form. We derive the solution that is approached in the large-time limit and calculate the
large-time kinetics. In section 3 we add a poison influx to the model, still allowing only one
morphology of cluster. We identify a critical level of poison influx and solve the system when
the poison addition rate is above and below this threshold. Finally, in section 4, we consider
the full model, with two morphologies forming, a poison influx which affects only one type of
cluster and a monomer influx. In particular we consider how poisoning the less stable cluster
type can influence the concentration profile of the more stable cluster. The paper concludes
with a discussion of the results in section 5.

1.1. General model

In the format of chemical reactions if we permit the Xr clusters to be poisoned, we include

P + Xr → U ∀r > 1 (7)

as well as the reactions (6). The poisoned clusters, U, are assumed to be completely inert and
have no further interaction with the system and so are ignored in the derivation of the kinetic
equations. We define the rate at which clusters are poisoned to be kr and applying the law of
mass action to (6) and (7) we obtain the infinite set of differential equations

ẋ1 = x0(t) − J1 − I1 −
∞∑

r=1

Jr −
∞∑

r=1

Ir (8)

ẋr = Jr−1 − Jr − krxrp ∀r � 2 (9)

ẏr = Ir−1 − Ir ∀r � 2 (10)
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ṗ = p0(t) −
∞∑

r=2

krxrp (11)

Jr = arx1xr − br+1xr+1 ∀r � 1 (12)

Ir = αrx1yr − βr+1yr+1 ∀r � 1 (13)

where p0(t) is the input rate of the poison and x0(t) is the input rate of the monomer. The
concentrations of X-clusters are denoted xr(t) and those of the Y morphology by yr(t). This
system is much more complex than the original Becker–Döring model, with the addition of
not only competition but also an influx of monomers and poison. To simplify the system
we assume throughout this paper that all the aggregation, fragmentation and poisoning rates
are size independent, that is ar = a, br = b, αr = α, βr = β and kr = k; also that the
influx of monomers and poison are time independent, so that x0(t) = x0 and p0(t) = p0. In
addition we assume that the initial conditions are xr = yr = p = 0 ∀r , that is there are no
clusters, monomer or poison present initially. We study several simplifications of (8)–(13)
before finally including all the terms in section 4.

1.2. Numerical simulation

To solve the system numerically we truncate the system at a finite size r = N . However, due
to the constant monomer influx, we expect a steady-state, or a borderline equilibrium, solution
to arise (xr = x1 or yr = x1∀r). We assume that JN = ax1xN − bxN and IN = αx1yN −βyN ;
this ensures that if xN, yN = 0 then JN, IN = 0 and hence the equilibrium solution will
be correctly reproduced and also if xr = x1 or yr = x1 then this steady-state, or borderline
equilibrium, solution will also be correctly reproduced. With these boundary conditions we
numerically solve

ẋ1 = x0 − J1 − I1 −
N∑

r=1

Jr −
N∑

r=1

Ir (14)

ẋr = Jr−1 − Jr − kpxr 1 < r � N (15)

ẏr = Ir−1 − Ir 1 < r � N (16)

ṗ = p0 −
N∑

r=2

kpxr (17)

Jr = ax1xr − bxr+1 Ir = αx1yr − βyr+1 1 � r < N (18)

JN = ax1xN − bxN IN = αx1yN − βyN . (19)

We solve the truncated system of equations by use of ode23s and ode15s of the Matlab 6
package [23]; these are special solvers for stiff systems which are accurate to large times, as
required by some of our simulations. All numerical simulations referred to in this paper are of
the above form with the relevant aggregation, fragmentation and poisoning rates and influxes
as given by the particular example.

2. Constant flux

In this section we study the Becker–Döring model with a constant influx of monomers;
however, in this simplification we do not allow for a poison influx or for competition for the
monomers and so the equations to be studied are
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ẋ1 = x0 − J1 −
∞∑

r=1

Jr (20)

ẋr = Jr−1 − Jr . (21)

Assuming that no clusters are present initially, the dynamics arise due to the steady influx of
monomers. In the absence of input the equilibrium solution is given by

xeq
r = θr−1x1 (22)

where θ = ax1/b which has density ρ = x1/(1−θ). Since the density in the system (20)–(21)
satisfies ρ = x0t we expect that θ −→ 1 as t −→ ∞. Numerically solving the system reveals
that as more mass is injected into the system x1 rises until θ approaches unity and the borderline
equilibrium solution x

eq
r = x1 = b/a is approached, as mass aggregates to increasingly large

cluster sizes.
Consider the zeroth moment, defined by

M0 =
∞∑

r=1

xr (23)

which, with the equations for ẋr (21) for r = 1, 2, . . . , yields

Ṁ0 = x0 + b(1 − θ)M0 − bx1. (24)

Obviously this is dependent on the monomer concentration but we know that the monomer
concentration is tending to x

eq
1 = b/a and so we assume that x1(t) = x

eq
1 + q1(t) with

q1(t) −→ 0 as t −→ ∞, and hence obtain θ = 1 + aq1/b which in equation (24) yields, at
leading order, (

x0 − b2

a

)
= aq1M0 (25)

and leads to the scalings M0 = M̄0t
µ, q1 = q̄1t

−µ with M̄0 = (x0 − b2/a)/aq̄1. To consider
the correction terms of equation (24) we need to include more terms in the expansion of M0

and x1, so that

M0 = M̄0t
µ + M̂0t

µ−ν (26)

x1 = b

a
+ q̄1t

−µ + q̄2t
−µ−ν (27)

and so we obtain

µM̄0t
µ−1 = −bq̄1t

−µ − aM̄0q̄2t
−ν − aq̄1M̂0t

−ν . (28)

To balance all the terms in this equation, we require that µ = 1/2 and ν = 1/2; numerical
simulations confirm that µ = 1/2.

We proceed by investigating the evolution of the size-distribution xr(t) as t −→ ∞. We
assume that x1 = b/a + q̄1t

−1/2 and xr = bψ(r, t)/a with ψ(r, t) −→ 1 as t −→ ∞, where
ψ = 1 for r = 1 and ψ −→ 0 as r −→ ∞. From equation (21), for ẋr , we obtain

∂ψ

∂t
= b

∂2ψ

∂r2
− aq̄1

t1/2

∂ψ

∂r
. (29)

This equation has a self-similar solution which can be written in terms of the self-similar
variable η = r/

√
t , yielding the solution ψ = A erfc(r/2

√
bt − s1), where s1 = aq̄1/

√
b and
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we determine A from the boundary condition ψ = 1 at r = 1; that is A = 1/ erfc(−s1), and
so finally

xr(t) ∼ b

a

erfc
(

r

2
√

bt
− s1

)
erfc(−s1)

as t −→ ∞ for r = O(
√

t). (30)

In summary, we have considered a simplified system which neglects competition and
poisoning effects, but includes an influx of monomers. Numerically we found that at small
times the system tends to a local equilibrium solution, and over large times this solution tends
to xr = x1, with increasingly large clusters being produced. The timescale over which this
occurs has been investigated and it was found that the monomer concentration tended to b/a

with correction term decaying with O(t−1/2), and that xr is given by the similarity solution
(30) as t −→ ∞.

3. Inhibition

Having investigated the model without an inhibitor we proceed to consider the more general
case of a non-zero influx of poison, p0 > 0, but maintain only a single morphology of cluster
(i.e. no competition for monomers). Hence we consider the equations

ẋ1 = x0 − J1 −
∞∑

r=1

Jr (31)

ẋr = Jr−1 − Jr − kpxr (32)

ṗ = p0 −
∞∑

r=2

kpxr . (33)

We seek a solution to this system of equations which balances the monomer influx by the
poison influx. The behaviour depends on the relative value of the monomer to poison influx
and all possible ratios are considered below.

3.1. Case A: 2p0 < x0

First we consider the parameter regime 2p0 < x0; that is, a relatively small influx of inhibitor.
The addition of poison will permit the existence of steady-state solutions in the large-time
limit and for these solutions we assume that x

eq
r = θ̂ r−1

x x1 and the effect of poisoning suggests
that θ̂ x < 1. Requiring ẋr = 0 with (32) yields

(θ̂ x − θ)(θ̂ x − 1) = kpθ̂x

b
(34)

which is solved by

θ̂ x = 1

2

(
1 + θ +

pk

b

)
± 1

2

√(
1 + θ +

pk

b

)2

− 4θ (35)

Solving ṗ = 0 in (33) gives

p = ap0(1 − θ̂ x)

bkθ θ̂x

(36)

and finally if ẋ1 = 0 then (31) implies that

x0 = b2θ

a(1 − θ̂ x)
(θ̂ x − 2)(θ̂ x − θ) (37)
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Figure 1. (A) Difference between the numerical value of p(t) and the analytically determined pfinal

for times 0 < t < 800; illustrating exponential convergence. (B) Comparison of the numerical
solution xr (2000) and the equilibrium xr = θ̂ r−1

x bθ/a. Parameters used were x0 = 1,

p0 = 0.4, a = 0.5, b = 1 and k = 0.25.

and these three equations are solved to give θ , θ̂ x and p. Substituting (36) into (34) implies

(θ̂ x − θ)(θ̂ x − 1) = (1 − θ̂ x)
ap0

b2θ
(38)

and we discount the possibility that in general θ̂ x = 1 since this leads to a contradiction in
(34); thus θ − θ̂ x = ap0/b

2θ and we obtain

θ̂ x = x0 − 2p0

x0 − p0
. (39)

Given that x0 > 2p0, equation (35) yields

θ = x0 − 2p0

2x0 − 2p0
+

√
ap0

b2
+

(
x0 − 2p0

2x0 − 2p0

)2

(40)

with x1 = bθ/a; we take the positive root of (40) so that θ −→ 1 in the limit k −→ 0. Thus
the final value of the poison is

pfinal = 2ap2
0(x0 − p0)

k(x0 − 2p0)
[
b(x0 − 2p0) +

√
b2(x0 − 2p0)2 + 4ap0(x0 − p0)2

] . (41)

We test this analytical result by comparison with a numerical simulation. In the large-time
limit formula (41) is correct as demonstrated in figure 1(A) where p(t)−pfinal is plotted against
time, where p(t) is the numerical result; this difference tends to zero as t −→ ∞ and we note
that, with a log scale on the vertical axis, the graph is linear, indicating exponential decay. In
figure 1(B) we compare the numerical and analytical solutions and find they agree with good
accuracy; furthermore we find numerically that the concentrations xr decay exponentially to
the given steady-state solution xr = x1θ̂

r−1
x . Given the condition x0 > 2p0 then this analysis

holds, and we note that θ̂ x is independent of a and b (numerically confirmed); however, x1 is
dependent on a and b. If p0 = 0 then θ̂ x = θ = 1 as t −→ ∞ as previously obtained. We also
note that the average cluster size, M1/M0 = 1/(1 − θ̂ x) is independent of the susceptibility
of poisoning (k), but the final poison concentration is proportional to 1/k. From (40) we see
that θ −→ 0 as p0 −→ x0/2 and (41) implies pfinal −→ ∞ as p0 −→ x0/2; we will return
to these results when we consider the case x0 = 2p0.
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3.2. Case B: x0 < 2p0

Increasing the level of poison will have a non-trivial impact on the system. Numerical
simulations suggest that all concentrations tend to zero, except for x1(t) which tends to a
constant, and p(t) which grows without limit in a linear fashion. To investigate the large-time
kinetics we make the assumption that xr(t) ∼ zr/tγr and p(t) = p1t ; further assuming that
γ1 = 0. Thus equation (32) becomes

zr t
−γr−1 = az1zr−1t

−γr−1 − bzr t
−γr − az1zr t

−γr + bzr t
−γr+1 − kp1zr t

−γr +1 (42)

as t −→ ∞ the dominant terms are the first and last term on the right-hand side and by
balancing them we find that γr − 1 = γr−1, which with γ1 = 0 yields γr = r − 1. If we
consider equation (33) then the summation is dominated by the first term and so p1 = p0−az2

1.
Finally, the leading order terms of equation (31) yield

z1 =
√

x0

2a
(43)

which, with the leading order terms from equation (42), implies

zr = (2ax0)
r/2

2(2p0 − x0)r−1
. (44)

These results have been confirmed by numerics [24], measurements of the gradient of a log–
log plot of x3 and x4 against time yield 1.99 and 2.97 respectively. Thus as t −→ ∞ we
have

p(t) ∼ (p0 − x0/2)t (45)

x1(t) ∼
√

x0/2a + o(1) (46)

xr(t) ∼ (2ax0)
r/2/2(2p0 − x0)

r−1t r−1 for r > 1. (47)

3.3. Case C: 2p0 = x0

The borderline case, 2p0 = x0, is such that there is just enough inhibitor to poison all the
clusters formed in the system, but it is not obvious how fast this will occur. Numerical
simulations suggest that the following scalings are appropriate for the problem

p = p1t
ξ + p2 (48)

x1 = z1 +
χ1

t ξ
(49)

xr = zr

tξ(r−1)
+

χr

tξr
(50)

with ξ = 1/2, and this will be confirmed by the following analysis. We assume no a
priori knowledge of χ1, χr , zr , z1 or ξ , only ξ > 0. The leading order terms in (31) give
x0 − 2ax2

1 = 0 hence z1 = √
x0/2a. Substituting equations (48)–(50) into (33) yields

ξp1t
ξ−1 = p0 − kp1z2 − kp2z2

t ξ
− kp1(χ2 + z3)

tξ
(51)

which to leading order gives p0 = kp1z2. Balancing the next order terms gives ξ = 1/2 and
so

1
2p1 = −kp2z2 − kp1(χ2 + z3). (52)
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With the scaling parameter we now consider (32)

−zr

2(r − 1)t (r−1)/2+1
=

√
ax0

2

zr−1

t (r−2)/2
+

aχ1zr−1

t (r−1)/2
+

√
ax0

2

χr−1

t (r−1)/2
− bzr

t (r−1)/2
−

√
ax0

2

zr

t (r−1)/2

− aχ1zr

t r/2
−

√
ax0

2

χr

tr/2
+

bzr+1

t r/2
− kp1zr

t (r−2)/2
− kp2zr

t (r−1)/2
− kp1χr

t(r−1)/2
. (53)

The leading order terms occur at O(t−(r−2)/2) yielding a recurrence relation with solution

zr =
(ax0

2

)r/2 1

akr−1pr−1
1

. (54)

Keeping terms to O(t−(r−1)/2) gives a recurrence relation for χr , that is

kp1χr −
√

ax0

2
χr−1 =

(ax0

2

)r/2 1

kr−1pr−1
1

ϒ (55)

where, for ease of analysis, we define the constant

ϒ = 1

a

(
kp1χ1

√
2a

x0
− b − a

√
x0

2a
− kp2

)
. (56)

Solving the recurrence relation yields

χr =
(

ϒ(r − 1) + χ1kp1

√
2

ax0

) (ax0

2

)r/2 1

krpr
1

. (57)

Finally, we consider (31), wherein the O(1/
√

t) terms yield

χ1 = z2(2b − √
ax0/2)

4
√

ax0/2
. (58)

We now wish to solve equations (52), (56) and (58) to find p1 and χ1. Equation (52) gives

p2 = − p1

2kz2
− p1χ2

z2
− p1z3

z2
(59)

which, when combined with equations (56) and (58), yields

p1 =
(ax0

2

)3/4 1√
ak

(60)

where the ϒ term arising from p2 on the LHS of equation (59) cancels exactly with that arising
from the p1χ2/z2 term on the RHS; thus there is no need to calculate the value of ϒ explicitly.
Additionally we have

χ1 = 23/2b − √
ax0

29/4a3/4x
1/4
0

√
k

(61)

and so the leading order terms have been resolved, however, p2 remains undetermined since
ϒ has not been evaluated (that calculation requires higher order equations and is omitted
here).

In figure 2(A) we plot the numerically determined poison concentration over time; it
shows an indefinite increase and using a log–log scale we have confirmed that the time
dependence scales with t1/2. If we assume that p = pnum

1 t1/2 then by considering the last
data point (t = 109) we obtain pnum

1 = 1.9167 which is in good agreement with the analytical
result of p1 = 1.9168 from (60). Additionally we have numerically confirmed that the
second-order term decays according to t−1/2 as predicted by the analysis. The monomer
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Figure 2. The special case x0 = 2p0: (A) the poison concentration against time; (B) difference
between the monomer concentration and its predicted limit, against time. The parameters used
were a = 2, b = 1, x0 = 1.5, p = 0.75 and k = 0.25.

concentration is predicted to tend to a finite limit, and this is shown in figure 2(B). The
analysis has predicted this limit to be x

eq
1 = 0.6124 and this agrees with the numerical

simulation. Finally we compared the numerical value of χnum
1 = 0.2477 with the analytical

prediction from (61), χ1 = 0.2477, and they agree. In this case monomers enter twice as
fast as poison and while the monomer concentration saturates to x1 −→ √

ax0/2, the poison
accumulates according to p ∼ (ax0/2)3/4t1/2/

√
ak, thus the clusters xr for r > 1 are scarce,

and these concentrations decay algebraically, the most numerous being the dimers which decay
according to x2 ∼ (x0/2a)1/4/

√
kt .

3.4. General ar, br , kr , with x0 < 2p0

Previous analysis has focused on the special case of size-independent rates (ar = a, br = b

and kr = k), which has been solved for all parameter regimes. In this section we solve the
case of x0 < 2p0 but for general rates, that is, size-dependent non-zero ar, br and kr . The
following analysis is similar to that of section 3.2. One steady state is xr = 0 (r > 1) with
x1 tending to a finite value, while the poison concentration grows linearly. We thus assume
xr ≈ zr/tγr and p = p1t ; further assuming that γ1 = 0 in the final timescale. The ẋr equation
yields

zr t
−γr−1 = ar−1z1zr−1t

−γr−1 − brzr t
−γr − arz1zr t

−γr + br+1zr t
−γr+1 − krp1zr t

−γr +1 (62)

and thus we deduce the same balance as before so that γr = r − 1. The leading order balance
for the above equation will be the first and last term on the RHS and so

zr = a1 · · · ar−1z
r
1

k2 · · · krp
r−1
1

. (63)

To calculate p1 we consider the leading order terms in the equation for ṗ (33) and obtain, as
before, p1 = p0 − a1z

2
1. We calculate z1 by balancing the leading order terms in equation (8),

thus z1 = √
x0/2a1, and so p1 = p0 − x0/2, and so we can expect this solution to fail

if 2p0 � x0. Thus as t −→ ∞ we have the solution p ∼ (p0 − x0/2)t and x1 ∼√
x0/2a1 +O(1/

√
t). This result is independent of the choice of rate coefficients and poisoning

susceptibility, assuming that these rates are non-zero.
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3.5. Summary

In this section we have considered a system with poisoning and monomer influx, but as yet
without competition for monomers, that is, we have allowed only one morphology of cluster to
form. We find three different cases, which depend on the relative levels of monomer to poison
influx. Firstly, in case A the poison influx is relatively small; in this case the concentration
profile tends to a steady-state solution and the poison level to a finite value and these have
been calculated explicitly. Numerical simulations reveal that the concentrations of clusters
and of poison decay exponentially to their final values. We additionally note that the average
cluster size is unaffected by the susceptibility of poisoning (k), but the final level of poison
does depend on k. Secondly, in case B the poison influx is relatively high compared with
the monomer influx. This results in linear, unlimited, growth of the poison concentration
(p(t) ∼ (p0 − x0/2)t) while all the cluster concentrations tend to zero in the large-time limit,
with the exception of the monomer concentration which tends to x1 = √

x0/2a. The timescale
over which the concentrations tend to zero is found to vary according to xr(t) ∼ O(t−(r−1))

for r > 1. This can be generalized to size-dependent aggregation, fragmentation and poison
susceptibility rates where, in general, x1 −→ √

x0/2a1, xr −→ 0 and p ∼ (p0 − x0/2)t

as t −→ ∞. In case C, we consider the case where the monomer and poison influxes are
balanced, the poison grows without limit, according to p ∼ (ax0/2)3/4t1/2/

√
ak, the monomer

concentration again tends to x1 = √
x0/2a and the larger cluster concentrations tend to zero

in the large-time limit. However, the larger cluster sizes tend to zero at a slower rate than in
case B, with xr ∼ t (r−1)/2.

The intuitive reason for a critical point existing at 2p0 = x0 is that since we do not
allow monomers to be poisoned, dimers must form before the cluster can be poisoned, so
with 2p0 < x0 the influx of poison is insufficient to poison all the monomers flowing into
the system. However, with 2p0 > x0 then there is sufficient poison influx to poison all the
mass as dimers and maintain a build up of poison. When 2p0 = x0, most of the monomers
added to the system forms dimers and is poisoned by the inhibitor, however a few trimers are
formed (these have a concentration which is O(1/

√
t) smaller than the dimer concentration).

The poisoning of a trimer leaves a slight excess of inhibitor, thus the concentration of inhibitor
rises at a rate proportional to O(1/

√
t), and so p ∼ O(

√
t).

4. Competition

We now allow competition between two morphologies of cluster growing from monomers,
while the inhibitor only affects one morphology, say the xr -clusters, as given by (9)–(13).
There are four types of behaviour observed depending on the aggregation and fragmentation
coefficients and the relative size of 2x0 to p0; these are discussed after a brief description of
the case p0 = 0, that is the case of competition without poisoning.

4.1. No poisoning, p0 = 0

In the absence of poison the input of monomers must be balanced by either the xr - or yr -
clusters tending to the borderline equilibrium solution, xr = x1 or yr = x1; unless a/b = α/β

in which case they will both tend to this state. If a/b > α/β then

xr −→ x1 = b

a
yr −→

(
αb

βa

)r
β

α
as t −→ ∞ r > 1 (64)

that is, the xr -clusters are more thermodynamically stable and will tend to the borderline
equilibrium solution, and the yr -clusters will tend to an equilibrium solution which decays as
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Figure 3. The large-time solution of xr and yr without poison and with a small amount of poison
(2p0 < x0) is shown. The arrows indicate how the addition of poison has effected each distribution.
Parameters: a = 1.3, b = 1, α = 1.2, β = 1, x0 = 1, k = 0.25, t = 106 and N = 500 with
p0 = 0 and p0 = 0.4.

r → ∞. If a/b < α/β then this situation is reversed so that

yr −→ x1 = β

α
xr −→

(
aβ

αb

)r
b

a
as t −→ ∞ r > 1. (65)

4.2. Case I: a/b > α/β, 2p0 < x0

Here xr -clusters are more thermodynamically stable than the yr -clusters and the input of
monomers dominates that of poison. In the parameter regime a/b > α/β and without poison
we expect the xr -clusters to approach the borderline equilibrium solution x

eq
r = x1 and the

yr -clusters to form an equilibrium solution yr = θ̂ r−1
y x1 with θ̂ y = αx1/β < 1. Figure 3

shows the large-time solution of the system both with and without poison. The addition
of poison alters the structure of the xr concentrations and the yr concentrations remain in
equilibrium, though with x1 and θ̂ y reduced; from xr = x1 to xr = θ̂ r−1

x x1 with θ̂ x < 1 as in
case A (see section 3.1, equations (39), (40) and (41)). In figure 3 we also plot the large-time
solution for the system with an influx of poison. By poisoning the xr -clusters sufficiently, the
yr become the more stable species as expected, although we note that due to the poisoning of
the xr -clusters the concentrations of the yr -clusters has also fallen; this is due to the reduced
monomer concentration, x1. In general, there will be a critical value of inhibitor influx, pcrit

0 ,
such that θ̂ x = θ̂ y so that xr = yr∀r; by combining θ̂ y = αx1/β and equations (39) and (40)
we deduce that pcrit

0 satisfies

βb

α

(
aβ

αb
− 1

)
= pcrit

0

(
x0 − pcrit

0

)2(
x0 − 2pcrit

0

)2 (66)

which clearly has a unique root for pcrit
0 between 0 and x0/2.

4.3. Case II: a/b > α/β, x0 < 2p0

Here the xr -clusters remain more stable than the yr -clusters, but there is now an abundance
of inhibitor. Case II differs from case I only by the increase of inhibitor in the system,
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Figure 4. The large-time solution of xr and yr without poison and with a large amount of poison
(p0 > x0/2). The parameters used were a = 1.3, b = 1, α = 1.2, β = 1, x0 = 1, k = 0.25, t =
106 and N = 500 with p0 = 0 and p0 = 0.51.

thus without poison the concentration profiles will be identical to those shown in figure 3.
With an increased amount of poison, p0 > x0/2, the yr -clusters remain in equilibrium
(yr = x1(αx1/β)r−1) while the xr -clusters behave as described in case B (section 3.2), thus
xr −→ 0 for r > 1 and x1 −→ √

x0/2a as t −→ ∞. In this case the poison concentration
rises linearly without limit, p ∼ p0t , and the xr are completely inhibited from growing, and
so the yr -clusters remain as the only stable form of cluster in the system, as shown in figure 4.
In summary, as t −→ ∞, we have

x1 =
√

x0

2a
+ O

(
1

t

)
(67)

yr ∼
(

α

β

)r−1 ( x0

2a

)r/2
(68)

xr = O(t−(r−1)) (69)

p ∼ p0t. (70)

4.4. Case III: a/b < α/β, 2p0 < x0

In this case the yr -clusters are more stable than the xr -clusters and there is an abundance
of monomer over inhibitor. In figure 5 we plot numerical results of the case with no input
of inhibitor, showing that the yr -concentrations approach the borderline equilibrium solution
yr = x1 = β/α. From section 2 we recall that the monomer concentration adjusts such
that αx1/β = 1 in the large-time limit. The xr concentrations form the equilibrium solution
xr = (ax1/b)r−1x1 = (aβ/bα)r−1β/α.

The addition of any amount of poison causes the monomer concentration to fall and thus
the yr -clusters to revert to an equilibrium solution which decays with increasing r, given by
yr = θ̂ r−1

y x1 with θ̂ y < 1. The condition 2p0 < x0 implies that the xr -clusters adjust to
a steady-state solution given by xr = θ̂ r−1

x x1. Since the yr -clusters are in equilibrium, the
analysis of case A (section 3.1) holds exactly and θ̂ x , θ and pfinal are given by equations (39),
(40) and (41) respectively, as shown in figure 5.
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Figure 5. The large-time solution of xr and yr without poison and with a small amount of poison
(p0 < x0/2) is shown. The parameters used were a = 1.2, b = 1, α = 1.3, β = 1, x0 = 1, k =
0.25, t = 106 and N = 500 with p0 = 0 and p0 = 0.4.
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Figure 6. The large-time solution of xr and yr without poison and with a large amount of poison
(x0 < 2p0) is shown. The parameters used were a = 1.2, b = 1, α = 1.3, β = 1, x0 = 1, k =
0.25, t = 106 and N = 500 with p0 = 0 and p0 = 0.4.

This is a surprising result. Without poison the yr -clusters form increasingly large clusters
and are by far the more stable configuration. While it is true that with poison the yr -clusters
are still the more stable morphology, the form of the solution for the yr -clusters is altered
considerably, from the borderline equilibrium in which the mass of yr -clusters grows without
bound

( ∑
r ryr = O(t)

)
to an equilibrium solution with a finite mass; a change induced by

poisoning the less stable cluster type (xr).

4.5. Case IV: a/b < α/β, x0 < 2p0

In the final case, yr -clusters are more stable than xr -clusters and the influx of poison dominates
that of monomers. If no poison is present then we still expect the long time results shown in
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figure 5, however, we now investigate the effect of a large amount of poison on the system,
that is 2p0 > x0. The yr -clusters form an equilibrium solution yr = θ̂ r−1

y x1 and so the analysis
of the xr -clusters follows exactly that of case B (section 3.2); thus in the large-time limit we
expect xr −→ 0 as t −→ ∞ for all r > 1 and the monomer concentration to be given by
equation (43). In figure 6 we plot the numerical xr and yr concentrations in the large-time
limit and note that equation (43) predicts a monomer concentration of x1 = 0.6455 which
agrees well with the numerical simulation. Again it is interesting that poisoning the less stable
clusters causes a dramatic change in the form of solution of the more stable cluster type.

5. Conclusion

In this paper the Becker–Döring model has been generalized several times to build up
a complicated model of competition for an influx of monomers, between two types of
morphologies, with one morphology being susceptible to an inhibitor which is also being
introduced at a constant rate. Numerical simulations have been performed to confirm the
analytical results obtained, after truncating the model at a large finite size r = N , typically
500.

Initially we considered the Becker–Döring model with a constant influx of monomers. At
small times the clusters form an equilibrium-like structure with θ = ax1/b < 1. We found
that as t −→ ∞, x1 −→ b/a so that the borderline equilibrium solution xr = x1 = b/a is
approached. We calculated the similarity solution which is valid in the large-time limit (30).

The next generalization added to the model is allowing a constant influx of inhibitor.
When a cluster is poisoned it is effectively removed from the system, since it plays no further
role in the kinetics of cluster growth. The solution is found to depend on the relative influx of
monomer (x0) to inhibitor (p0), with a special case when 2p0 = x0. In the case 2p0 < x0 we
found that the poison tends to a finite concentration while the xr -clusters tend to a steady-state
solution. In contrast, if x0 < 2p0 then the concentration of inhibitor increases without limit,
linearly in time, and xr −→ 0 for r > 1, with xr = O(t−(r−1)) as t −→ ∞. In the borderline
case 2p0 = x0, the system again tends to the solution xr −→ 0 for r > 1 as t −→ ∞ and the
inhibitor concentration tends to infinity as t −→ ∞. In this case the appropriate scalings are
p ∼ t1/2, x1 ∼ x̄1 and xr ∼ 1/t(r−1)/2; and we calculated the leading order terms in all cases.
In the case x0 < 2p0 the scalings hold for general ar, br and kr , calculating the final solution
and the timescale over which this is approached. If clusters of size r < m were immune from
poisoning, then we expect a critical input ratio at x0 = mp0, with all cluster concentrations
decaying to zero if x0 < mp0 and a non-zero steady state if x0 > mp0.

The final generalization to be added to the model is to allow competition for monomers,
that is, where monomers aggregate into one of two types of cluster, xr or yr , but we allow
only the xr -clusters to be poisoned. In the absence of a poison influx, we find that the less
thermodynamically cluster forms an equilibrium solution which decays with increasing r,
while the more stable morphology approaches the degenerate equilibrium solution in which
the concentrations of all sizes equal x1. In the presence of inhibitor, we first assume that the
yr -clusters are the less stable, then poisoning the xr -clusters results in a steady-state solution
for the xr -clusters if 2p0 < x0, and if x0 < 2p0 then xr −→ 0 for all r > 1 (identical results
as previously obtained without competition). However, if, without poison, the yr -clusters are
more stable and form the degenerate equilibrium solution yr = x1, then poisoning the less
stable cluster, (xr), results in the yr -clusters forming an equilibrium solution which decreases
at large cluster sizes. The size distribution of the more stable morphology is significantly
altered by poisoning the less stable cluster; this is not an intuitive result. A naive interpretation
of such an observation would lead one to assume that the inhibitor was acting primarily on
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yr -clusters, or possibly on both the xr - and the yr -clusters. In the unpoisoned case the less
stable morphology (xr) reaches its equilibrium and then all input monomers form the y-
morphology, whereas with an inhibitor a steady state is reached in which all input monomers
form the x-morphology and are then poisoned.

These results have important applications in polymorph prediction, and in explaining why
the predicted most stable morphology of a crystal is not always the one observed in nature.
In cases where two polymorphs have a similar thermodynamic stability, the presence of other
chemical species may have a stronger inhibiting effect on the growth of the more stable
morphology, thus allowing the less stable morphology to dominate. We hope to generalize
this work to the more complex cases where the aggregation and fragmentation rates are size
dependent. This occurs, for example, in classical nucleation theory (see Lewis [25] for
details), where statistical mechanical models of the growing crystal nucleus are formulated in
terms of a surface energy and a bulk energy. In addition to systems which can form multiple
morphologies of crystal, models such as these could also be applied to the problems of protein
crystallization where amorphous solids as well as crystals are often produced, see Kam [26]
and Weber [27] for further details.
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